<acronym id="qecy8"></acronym>
<acronym id="qecy8"><center id="qecy8"></center></acronym><sup id="qecy8"></sup>
<rt id="qecy8"><center id="qecy8"></center></rt>
<acronym id="qecy8"><center id="qecy8"></center></acronym>
<sup id="qecy8"><center id="qecy8"></center></sup>
詳細內容 當前位置:首頁 > 科學研究 > 學術交流
發布時間:2020-12-30【告訴好友】 【關閉窗口】


  會議 ID:103 724 415 (騰訊會議)

  會議時間:2021/01/05 14:00-16:00



  (一)報告人:楊蓉  講師  北京工業大學

  題目:Propagation of chaos for the N particle interacting system


  摘要:We consider an N particle interacting system with the singular potential and Brownian motions. Assuming that the initial data are independent and identically distributed with a common probability density function. We rigorously prove the propagation of chaos for this interacting system: when N goes to infinity, the empirical measure of the particle system converges in law to a probability measure and this measure possesses a density, which is a weak solution to the mean-field partial differential equation. More precisely, each particle path is approximated by a strong solution to a mean-field self-consistent stochastic differential equation. The global existence and uniqueness of strong solution to this SDE is proved and consequently we also prove the uniqueness of weak solution to the differential equation.



  楊蓉, 北京工業大學理學部,講師,碩士生導師。研究方向為隨機微分方程和偏微分方程。已經在J. Differential Equations,Math. Comput.等國際知名學術期刊上發表多篇論文。主持完成國家自然科學青年基金項目一項。2013年7月至2014年8月公派訪問杜克大學。

  (二)報告人:陳鴻碩  博士后  重慶大學

  題目:A Statistical Theory of Heavy Atoms: Energy and Excess Charge


  摘要:The description of heavy atoms suffered for a long time from the fact that the naive adaptation of Thomas-Fermi to the relativistic setting leads to a functional that is unbounded from below. Engel and Dreizler solved this problem deriving a relativistic Thomas-Fermi- Weizs?cker -Dirac functional ?ZTFWD from quantum electrodynamics. We give an elementary derivation of a lower bound on the this functional of Thomas-Fermi type and to apply it to get an upper bound on the excess charge of this model.



  陳鴻碩, 重慶大學數學與統計學院,博士后。研究方向為偏微分方程以及數學量子力學。2019年于德國慕尼黑大學博士畢業回國。已經在Journal of Physics. A等國際知名學術期刊上發表論文。